chrome headless 모드에서 크롤링을 하던 중 아래와 같은 문제가 발생하였다.
{logging_mixin.py:188} WARNING - /home/ubuntu/airflow_venv/lib/python3.12/site-packages/airflow/task/task_runner/standard_task_runner.py:61 DeprecationWarning: This process (pid=7115) is multi-threaded,
use of fork() may lead to deadlocks in the child.
grep 명령어를 사용하여 fork 가 어디에서 사용되는지 해당 파일에서 확인해 보았다. fork() 함수가 _start_by_fork() 라는 함수 내부에서 사용되고 있다.
/home/ubuntu/airflow_venv/lib/python3.12/site-packages/airflow/task/task_runner/standard_task_runner.py
요 경로의 코드를 확인해보자.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Standard task runner."""
from __future__ import annotations
import logging
import os
from typing import TYPE_CHECKING
import psutil
from setproctitle import setproctitle
from airflow.models.taskinstance import TaskReturnCode
from airflow.settings import CAN_FORK
from airflow.task.task_runner.base_task_runner import BaseTaskRunner
from airflow.utils.dag_parsing_context import _airflow_parsing_context_manager
from airflow.utils.process_utils import reap_process_group, set_new_process_group
if TYPE_CHECKING:
from airflow.jobs.local_task_job_runner import LocalTaskJobRunner
class StandardTaskRunner(BaseTaskRunner):
"""Standard runner for all tasks."""
def __init__(self, job_runner: LocalTaskJobRunner):
super().__init__(job_runner=job_runner)
self._rc = None
if TYPE_CHECKING:
assert self._task_instance.task
self.dag = self._task_instance.task.dag
def start(self):
if CAN_FORK and not self.run_as_user:
self.process = self._start_by_fork()
else:
self.process = self._start_by_exec()
def _start_by_exec(self) -> psutil.Process:
subprocess = self.run_command()
self.process = psutil.Process(subprocess.pid)
return self.process
def _start_by_fork(self):
pid = os.fork()
if pid:
self.log.info("Started process %d to run task", pid)
return psutil.Process(pid)
else:
# Start a new process group
set_new_process_group()
import signal
signal.signal(signal.SIGINT, signal.SIG_DFL)
signal.signal(signal.SIGTERM, signal.SIG_DFL)
from airflow import settings
from airflow.cli.cli_parser import get_parser
from airflow.sentry import Sentry
# Force a new SQLAlchemy session. We can't share open DB handles
# between process. The cli code will re-create this as part of its
# normal startup
settings.engine.pool.dispose()
settings.engine.dispose()
parser = get_parser()
# [1:] - remove "airflow" from the start of the command
args = parser.parse_args(self._command[1:])
# We prefer the job_id passed on the command-line because at this time, the
# task instance may not have been updated.
job_id = getattr(args, "job_id", self._task_instance.job_id)
self.log.info("Running: %s", self._command)
self.log.info("Job %s: Subtask %s", job_id, self._task_instance.task_id)
proc_title = "airflow task runner: {0.dag_id} {0.task_id} {0.execution_date_or_run_id}"
if job_id is not None:
proc_title += " {0.job_id}"
setproctitle(proc_title.format(args))
return_code = 0
try:
with _airflow_parsing_context_manager(
dag_id=self._task_instance.dag_id,
task_id=self._task_instance.task_id,
):
ret = args.func(args, dag=self.dag)
return_code = 0
if isinstance(ret, TaskReturnCode):
return_code = ret.value
except Exception as exc:
return_code = 1
self.log.error(
"Failed to execute job %s for task %s (%s; %r)",
job_id,
self._task_instance.task_id,
exc,
os.getpid(),
)
except SystemExit as sys_ex:
# Someone called sys.exit() in the fork - mistakenly. You should not run sys.exit() in
# the fork because you can mistakenly execute atexit that were set by the parent process
# before fork happened
return_code = sys_ex.code
except BaseException:
# while we want to handle Also Base exceptions here - we do not want to log them (this
# is the default behaviour anyway. Setting the return code here to 2 to indicate that
# this had happened.
return_code = 2
finally:
try:
# Explicitly flush any pending exception to Sentry and logging if enabled
Sentry.flush()
logging.shutdown()
except BaseException:
# also make sure to silently ignore ALL POSSIBLE exceptions thrown in the flush/shutdown,
# otherwise os._exit() might never be called. We could have used `except:` but
# except BaseException is more explicit (and linters do not comply).
pass
# We run os._exit() making sure it is not run within the `finally` clause.
# We cannot run os._exit() in finally clause, because during finally clause processing, the
# Exception handled is held in memory as well as stack trace and possibly some objects that
# might need to be finalized. Running os._exit() inside the `finally` clause might cause effects
# similar to https://github.com/apache/airflow/issues/22404. There Temporary file has not been
# deleted at os._exit()
os._exit(return_code)
def return_code(self, timeout: float = 0) -> int | None:
# We call this multiple times, but we can only wait on the process once
if self._rc is not None or not self.process:
return self._rc
try:
self._rc = self.process.wait(timeout=timeout)
self.process = None
except psutil.TimeoutExpired:
pass
return self._rc
def terminate(self):
if self.process is None:
return
# Reap the child process - it may already be finished
_ = self.return_code(timeout=0)
if self.process and self.process.is_running():
rcs = reap_process_group(self.process.pid, self.log)
self._rc = rcs.get(self.process.pid)
self.process = None
if self._rc is None:
# Something else reaped it before we had a chance, so let's just "guess" at an error code.
self._rc = -9
if self._rc == -9:
# If either we or psutil gives out a -9 return code, it likely means
# an OOM happened
self.log.error(
"Job %s was killed before it finished (likely due to running out of memory)",
self._task_instance.job_id,
)
def get_process_pid(self) -> int:
if self.process is None:
raise RuntimeError("Process is not started yet")
return self.process.pid
멀티 스레드 환경에서 fork() 함수를 사용하면 자식 프로세스에서 deadlock 이 발생할 수도 있다. 따라서 멀티스레드 환경에서 발생하는 deadlock 문제를 최소화 하기 위해 조치가 필요한 상황이다. 방법은 아래의 2가지가 있다.
1. Airflow 의 StandardTaskRunner 를 CgroupTaskRunner 또는 KubernetesTaskRunner 로 바꾸는 방법
2. Python 에서의 멀티 프로세싱 방식을 fork 대신 spawn 방식으로 바꾸는 방법
현재 사용중인 airflow executor 는 LocalExecutor 로, CgroupTaskRunner 와 함께 사용할 수 있다. 따라서 airflow.cfg 설정에서 task_runner 를 위와 같이 바꾸어 주었다. KubernetesTaskRunner 또한 LocalExecutor 와 함께 사용할 수 있지만, 현재 airflow 서버를 k8s 클러스터에서 실행하지 않고 있기에 사용할 수 없었다.
'Data Engineering > Airflow' 카테고리의 다른 글
[Apache Airflow 기반의 데이터 파이프라인] Ch01. Apache Airflow 살펴보기 (0) | 2024.07.26 |
---|---|
[Airflow] 주요 컴포넌트와 Executor 의 종류 (0) | 2024.06.02 |